Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hybrid metal halide perovskite (MHP) materials, while being promising for photovoltaic technology, also encounter challenges related to material stability. Combining 2D MHPs with 3D MHPs offers a viable solution, yet there is a gap in the understanding of the stability among various 2D materials. The mechanical, ionic, and environmental stability of various 2D MHP ligands are reported, and an improvement with the use of a quater‐thiophene‐based organic cation (4TmI) that forms an organic‐semiconductor incorporated MHP structure is demonstrated. It is shown that the best balance of mechanical robustness, environmental stability, ion activation energy, and reduced mobile ion concentration under accelerated aging is achieved with the usage of 4TmI. It is believed that by addressing mechanical and ion‐based degradation modes using this built‐in barrier concept with a material system that also shows improvements in charge extraction and device performance, MHP solar devices can be designed for both reliability and efficiency.more » « less
-
null (Ed.)Perchlorate (ClO4–) is a pervasive, harmful, and inert anion on both Earth and Mars. Current technologies for ClO4– reduction entail either harsh conditions or multicomponent enzymatic processes. Herein, we report a heterogeneous (L)Mo–Pd/C catalyst directly prepared from Na2MoO4, a bidentate nitrogen ligand (L), and Pd/C to reduce aqueous ClO4– into Cl– with 1 atm of H2 at room temperature. A suite of instrument characterizations and probing reactions suggest that the MoVI precursor and L at the optimal 1:1 ratio are transformed in situ into oligomeric MoIV active sites at the carbon–water interface. For each Mo site, the initial turnover frequency (TOF0) for oxygen atom transfer from ClOx– substrates reached 165 h–1. The turnover number (TON) reached 3840 after a single batch reduction of 100 mM ClO4–. This study provides a water-compatible, efficient, and robust catalyst to degrade and utilize ClO4– for water purification and space exploration.more » « less
-
Reduced Energetic Disorders in Dion–Jacobson Perovskites for Efficient and Spectral Stable Blue LEDsAbstract Metal halide perovskites have witnessed great success in green, red, and near‐infrared light‐emitting diodes (LEDs), yet blue LEDs still lag behind. Reducing undesired energetic disorders – broadn‐phases and halide segregation – is considered as the most critical strategy to further improve the performances. Here, the study reports a newly designed and synthesized di‐ammonium ligand with rigidπ‐conjugated rings and additional methyl groups to construct Dion–Jacobson (DJ) structure. Augmented coordination from the extra ammonium site and increased effective bulkiness from methyl groups lead to better distribution control over conventional mono‐ammonium ligands. This enhances the radiative recombination of blue emissions in the film with homogeneous energy landscape and improved surface morphology, as evidenced by a series of imaging and mapping techniques. As a result, it demonstrates DJ perovskite LEDs (PeLEDs) with peak external quantum efficiencies of ≈4% at 484 nm and ≈11% at 494 nm, which are among the top reported for pure DJ phase‐based PeLEDs in the corresponding wavelength regions. The results deepen the understanding of regulating energetic disorders in perovskite materials via molecular engineering.more » « less
An official website of the United States government
